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Abstract
The dynamic behaviour of the molecular alignment strongly affects the
rheological properties of nematic liquid crystals. The closed nonlinear
relaxation equation for the five components of the alignment tensor which was
derived within the framework of irreversible thermodynamics and also inferred
from a generalized Fokker–Planck equation led to the prediction (Rienäcker et al
2002 Phys. Rev. E 66 040702(R); Physica A 315 537) that the rather complex
orientational behaviour of tumbling nematics can even be chaotic in a certain
range of the relevant control variables. Here the rheological consequences,
in particular the shear stress and the normal stress differences, as well as the
underlying dynamics of the alignment tensor are computed and discussed. For
selected state points, long time averages are evaluated for imposed shear rates.
Orientational and rheological properties are presented. The transitions between
different dynamic states are detected and discussed. Representative examples
of alignment orbits and rheological phase portraits give insight into the dynamic
behaviour.

1. Introduction

Nematic liquid crystals subjected to a stationary shear flow can either go to a stationary ‘flow
aligned state’ or have an orientation showing a time dependent, often periodic response. The
latter case is referred to as ‘tumbling’. Within the Ericksen–Leslie director theory [1–4] this
occurs when the ‘tumbling parameter’, which is the ratio of two viscosity coefficients, is less
than one. In general, the orientational dynamics is more complex and requires the tensorial
description used here [4–6]. The term ‘tumbling nematic’ is applied to nematic liquid crystals
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in the range of temperature or concentration where no stationary flow alignment is obtained
for small shear rates. Tumbling has been observed in low molecular weight thermotropic
liquid crystals [4, 7], in polymeric main chain liquid crystals [4, 8], as well as in lyotropic
liquid crystals and micellar solutions (living polymers) [9, 10]. Even more dramatic is a
chaotic behaviour found in theoretical studies [11–13] of the orientational dynamics. It is
the purpose of this paper to present results for the rheological behaviour of such a liquid
crystal, for a few state points, as a function of the shear rate, as follows from the dynamics
of the alignment analysed previously in [11, 13]. At the same time, the theoretical approach
is outlined and the applications to flow birefringence, flow alignment, and to the computation
of the viscous properties are discussed. Points of departure are coupled equations for the
second-rank alignment tensor specifying the orientation of non-spherical particles and for
the friction pressure or stress tensor. These equations have been derived from irreversible
thermodynamics quite some time ago [5]; for extensions to spatially inhomogeneous systems
and for some further extensions, see [14] and [15]. The nonlinear relaxation equation for
the alignment tensor has also be derived from a generalized Fokker–Planck equation for the
orientational distribution function [6, 16, 17].

Indications for rheo-chaos, i.e., for chaotic rheological behaviour of fluids, have recently
been found in experiments [18], and theoretical studies were performed [19], where the
underlying dynamics, however, differs from the case studied here. It is hoped that the
computations presented will help in the detection of rheo-chaos and identification of its
properties for tumbling nematic polymeric and lyotropic liquid crystals, as well as colloidal
dispersions of rod-like or disc-like particles and solutions of viruses [20, 21]. For simplicity,
liquid crystalline monodomains are treated where the velocity gradient can be considered as an
external variable. Treating the full polydomain problem where the hydrodynamic equations
for the flow field have to be solved simultaneously with those for the alignment tensor is
possible, but computationally more demanding; for first studies of this kind which indicate
also the existence of spatial chaos, see [22]. Nevertheless, a detailed analysis of the spatially
homogeneous case is needed to find the range of parameters where a regular, stationary or
periodic and where a more complex and even chaotic temporal behaviour occur.

Tumbling of isolated ellipsoidal particles in a shear flow was described by Jeffrey over 80
years ago [23]. Within the frame work of the Ericksen–Leslie theory [1], the director specifying
the direction of the average orientation in a nematic liquid crystal shows a similar dynamic
behaviour or goes to a flow aligned state when the tumbling parameter is below or above 1,
respectively [4]. The Ericksen–Leslie theory is a limiting case of the more general tensorial
theory when one assumes that the alignment tensor remains uniaxial, as in equilibrium, and
that the degree of order is not affected by the flow. For intermediate and large shear rates,
however, the biaxiality of the alignment and the change of the order parameter do play a role
and the dynamic behaviour of tumbling nematics is far richer than what the Ericksen–Leslie
theory can describe. Numerous theoretical studies of the behaviour of nematics in a shear
flow, based on a tensorial description and also on the dynamics of the orientational distribution
function, have been performed; some key references and reviews are [4–6, 17, 24–31]. The
rheological properties in the chaotic regime have not been presented previously.

This paper is organized as follows. In section 2, the basic theory is outlined. The nonlinear
relaxation equation for the second-rank alignment tensor is formulated and the constitutive
relation for the friction pressure or stress tensor is stated. These equations involve characteristic
relaxation time coefficients pertaining to the relaxation of the alignment and to its coupling
with the stress tensor or with the velocity gradient. At the same time, the stress contains a
contribution associated with the deviation of the alignment from its equilibrium value. Scaled
variables are introduced for all physical quantities of interest. The essential model parameters
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are, firstly, a temperature or density variable which determines, for an equilibrium situation,
whether the system is in an isotropic or nematic state and, secondly, the value of the tumbling
parameter which governs whether a stationary or a time dependent response results from a
small applied steady shear rate. This quantity, of course, is also an essential control parameter.
With the help of five basis tensors, the alignment tensor equation is rewritten in terms of its five
components. In the case of a plane Couette flow, three of these components suffice when the
alignment has a symmetry in accord with that of the symmetric traceless (deviatoric) part of
the velocity gradient tensor. Spontaneous symmetry breaking, however, can occur for certain
ranges of parameters. Thus the full set of components is taken into consideration. Similarly, the
stress tensor is characterized by five components; the symmetry adapted ones are linked with
the shear stress and the first and second normal stress differences. Stress components violating
the Couette symmetry can also be non-zero. A brief survey of the nomenclature used to describe
the different kinds of stationary states and of symmetry adapted time dependent solutions, such
as ‘tumbling’ and ‘wagging’, as well as of symmetry breaking ones, such as ‘kayaking and
tumbling’ and ‘kayaking and wagging’ is given. Section 3 is devoted to a presentation of the
rheological properties inferred from time averages of the dynamic equations for selected state
points. Graphs are shown for the shear stress and for the viscosity as functions of the shear
rate for the isotropic phase, for a shear flow induced transition into the nematic phase, and for
a flow aligned nematic. The main emphasis is on a tumbling nematic where, with increasing
shear rates, transitions between different dynamic states occur, e.g. from kayaking–tumbling,
to tumbling, to kayaking–wagging, to kayaking–tumbling, to a complex and chaotic behaviour,
and to a flow aligned state. Graphs of the shear stress and of normal stress differences, as well
as of properties of the alignment tensor, give evidence of these transitions. The nature of
the dynamic states, however, is more clearly revealed by ‘orbits’ or ‘phase portraits’ where
components of the alignment tensor are plotted against each other, as well as the first normal
stress difference being displayed versus the shear stress. Representative examples of these
curves are displayed and discussed in section 4.

2. Relaxation equations and constitutive relations

2.1. The alignment tensor

The alignment of effectively uniaxial particles with a molecular unit vector u is characterized
by an orientational distribution function f (u, t) [6, 32–34]. The appropriate order parameter
for a nematic is the second-rank alignment tensor

a ≡
√

15
2 〈uu 〉 ≡

∫
f (u, t)

√
15
2 uu d2u, (1)

which is the anisotropic second moment characterizing the distribution. The symbol x
indicates the symmetric traceless part of a tensor x. Frequently, the alignment tensor is also
referred to as a ‘Q-tensor’, sometimes as a ‘S-tensor’. The symmetric traceless part of the
dielectric tensor which gives rise to birefringence is proportional to the alignment tensor. Thus
the shear flow induced modifications of the alignment can be detected optically [35].

For the special case of uniaxial symmetry (uniaxial phase) the alignment tensor a can be
parametrized by a scalar order parameter a and the director n, i.e., a = a(3/2)1/2 nn , such
that a2 = a : a and −√

5/2 � a = (3/2)1/2a : nn �
√

5. The parameter a is therefore
proportional to the Maier–Saupe order parameter S2 ≡ 〈P2(u ·n)〉 = a/

√
5, where P2 denotes

the second Legendre polynomial.
We start by revisiting the underlying original nonlinear relaxation equation for the

alignment tensor, based on irreversible thermodynamics. The equation involves characteristic
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phenomenological coefficients, namely the relaxation time coefficients τa > 0 and τap, a
dimensionless coefficient (shape factor) κ , the pseudo-critical temperature T ∗, the nematic–
isotropic transition temperature TK with TK > T ∗, and the positive parameters A0, B, C (with
C < 2B2/(9A0)) of a Landau–de Gennes potential �(a) = (1/2)A(T )a : a− (1/3)

√
6B(a ·

a) : a + (C/4)(a : a)2 with A(T ) = A0(1 − T ∗/T ). The value of A0 depends on the
coefficient of proportionality between a and 〈uu 〉 chosen. The choice made in (1) implies
A0 = 1; see [5]. The coefficients, on the one hand, are linked with measurable quantities and,
on the other hand, can be related to molecular quantities within the framework of a mesoscopic
theory [6, 16, 17]. The equation of change for alignment tensor in the presence of a flow field
v reads [5, 15]

∂a

∂ t
− 2 ω × a − 2κ Γ · a + τ−1

a Φ(a) = −√
2
τap

τa
Γ, (2)

where

Φ(a) ≡ ∂�/∂a = Aa − √
6B a · a + Caa : a (3)

is symmetric and traceless. The symbols Γ and ω denote the symmetric traceless part of
the velocity gradient tensor (strain rate tensor) Γ ≡ ∇v , and the vorticity ω ≡ (∇ × v)/2,
respectively. In the case of a simple shear flow v = γ̇ yex in the x-direction, gradient in the
y-direction, and vorticity in the z-direction, to be considered throughout the following analysis,
these quantities simplify to Γ = γ̇ exey and ω = −(1/2)γ̇ez . The unit vectors parallel to the
coordinate axes are denoted by ex , ey, ez .

Equation (2) has been extended to inhomogeneous systems by changing the time derivative
from a partial to a substantial one, and by adding a term ∝�a characterizing inhomogeneous
systems [14]; see also [36] for related works. For lyotropic liquid crystals the concentration cof
non-spherical particles in a solvent rather than the temperature determines the phase transition;
i.e., in this case one has A ∝ (1 − c/c∗), where c∗ is the pseudo-critical concentration [16].
In [37] similar equations have been used to study the flow alignment and rheology of semi-dilute
polymer solutions, where c∗ denotes the overlap concentration. In [30] some mathematically
rigorous results were obtained using geometric techniques relating to a Landau–de Gennes
model of a liquid crystal in a uniform flow. An analysis based on the dynamics of the
orientational distribution function is presented in [28]. In [13, 15, 29] the symbol σ was used
instead of κ . The special values 0 and ±1 for the coefficient κ in (2) correspond to corotational
and codeformational time derivatives. From the solution of the generalized Fokker–Planck
equation one finds, for long particles, κ ≈ 3/7 ≈ 0.4.

2.2. The pressure tensor

Not only is the alignment influenced by the flow, but also the flow properties as characterized
by the friction pressure tensor are affected by the alignment. The full pressure tensor p consists
of a hydrostatic pressure p, an antisymmetric part, and the symmetric traceless part p referred
to as the friction pressure tensor [5]. The latter splits into an ‘isotropic’ contribution, as already
present in fluids composed of spherical particles or in fluids of non-spherical particles in an
perfectly ‘isotropic state’ with zero alignment, and a part explicitly depending on the alignment
tensor:

p = −2ηisoΓ + pal , (4)

with [15]

pal = ρ

m
kBT

(√
2
τap

τa
Φ(a) − 2κ a · Φ(a)

)
. (5)
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In equilibrium, one has �(a) = 0 and consequently pal = 0. The occurrence of the same
coupling coefficient τap in (5) as in (2) is due to an Onsager symmetry relation. For results
on the rheological properties in the isotropic and in the nematic phases with stationary flow
alignment, following from (2) and (5), see [5, 14, 15, 29]. Here, the main attention is focused
on the rheology in the tumbling and in complex dynamic states.

2.3. Scaled variables and model parameters

The equations (2) and (5) can be rewritten in scaled variables [5, 14, 15, 29] which are
convenient for the theoretical analysis. At the same time, the essential parameters in the
system of differential equations are identified and their physical meaning is discussed. Firstly,
the alignment tensor is expressed in units of the value of the order parameter at the isotropic–
nematic phase transition:

aK = 2B

3C
, (6)

occurring at the temperature TK > T ∗. With the temperature variable

ϑ ≡ 9

2

AC

B2
= 1 − T ∗/T

1 − T ∗/TK
, (7)

the temperature dependence of the uniaxial equilibrium alignment is aeq = 0 for ϑ � 9/8
(isotropic phase) and

aeq/aK = 1
4 (3 +

√
9 − 8ϑ), for ϑ < 9/8 (nematic phase). (8)

Notice, that ϑ = 1 corresponds to the equilibrium phase coexistence temperature. The values
ϑ = 9/8 and 0 are the upper and lower limits for the metastable nematic and isotropic states,
respectively. The quantity δK = 1 − T ∗/TK which sets a scale for the relative difference of
the temperature from the equilibrium phase transition is known from experiments to be of the
order 0.1–0.001. On the other hand, it is related to the coefficients occurring in the potential
function according to

δK = 2

9

B2

A0C
= 1

2
a2

K
C

A0
. (9)

The derivative Φ of the potential function in (2) can be written as

Φ = �refΦ∗(a∗), �ref = aK
2

9

B2

C
= aKδK A0, a∗ = a/aK,

Φ∗(a∗) = ϑa∗ − 3
√

6 a∗ · a∗ + 2a∗a∗ : a∗. (10)

Clearly, the variable ϑ suffices to characterize the equilibrium behaviour determined by Φ = 0.
It should be mentioned that ϑ can be also be interpreted as a density or concentration variable
according to ϑ = (1−c/c∗)/(1−cK/c∗) where c stands for the concentration in lyotropic liquid
crystals. For the full nonequilibrium system, times and shear rates are made dimensionless
with a convenient reference time. The relaxation time of the alignment in the isotropic phase is
τa A−1

0 (1 − T ∗/T )−1, showing a pre-transitional increase. This relaxation time, at coexistence
temperature TK, is used as a reference time:

τref = τa(1 − T ∗/TK)−1 A−1
0 = τaδ

−1
K A−1

0 = τa
9C

2B2
= τaaK�−1

ref . (11)

The shear rates are expressed in units of τ−1
ref . The scaled shear rate, a product of the true shear

rate and the relevant relaxation time, is also referred to as the ‘Deborah number’. Instead of
the ratio τap/τa, the parameter

λk = −(2/3)
√

3
τap

τa
a−1

K (12)
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Figure 1. The tumbling parameter as a function of the temperature or concentration variable ϑ

for λk = 1.45, 1.25 and κ = 0 (upper and lower thin curves) as well as λk = 1.25, 1.05 and
κ = 0.4 (upper and lower thick curves). The dashed horizontal line marks the limit between the
flow aligned (λeq > 1) and the tumbling (λeq < 1) states.

is used. As was shown previously [6, 14, 15, 29], the coefficients τa and τap are proportional
to the Ericksen–Leslie [1] viscosity coefficients γ1 and γ2, respectively. The present theory
applies both for the isotropic and for the nematic phase. The Ericksen–Leslie theory follows
from the present approach when the alignment tensor is uniaxial and when the effect of the
shear flow on the magnitude of the order parameter can be disregarded. Then it suffices to use
a dynamic equation for the ‘director’ which is a unit vector parallel to the principal axis of
the alignment tensor associated with its largest eigenvalue. This is a good approximation deep
in the nematic phase and for small shear rates. For intermediate and large shear rates and, in
particular, in the vicinity of the isotropic–nematic phase transition, the tensorial description is
needed. The ‘tumbling coefficient’ λ = −γ2/γ1 is given by

λeq = λk
aK

aeq
+

1

3
κ, (13)

where aeq is recalled as the equilibrium value of the alignment in the nematic phase. Thus λeq is
equal to λk at the transition temperature provided that κ = 0. Here, the tumbling parameter (13)
as a function of temperature is monotonic while some molecular models suggest using a non-
monotonic profile. In the limit of small shear rates γ̇ , the tumbling parameter is related to the
Jeffrey tumbling period [23]; see also [29]. A representation of the tumbling parameter in terms
of second- and fourth-rank order parameters, which simplifies to the present expression (13) for
a simple quadratic closure, has been derived in [38]. Within the Ericksen–Leslie description,
the flow alignment angle χ in the nematic phase is determined by

cos(2χ) = −γ1/γ2 = 1/λeq. (14)

A stable flow alignment, at small shear rates, exists for |λeq| > 1 only. For |λeq| < 1, tumbling
and an even more complex time dependent behaviour of the orientation occur. The quantity
|λeq| − 1 can change sign as a function of the variable ϑ ; see figure 1. For |λeq| < 1 and in the
limit of small shear rates γ̇ , the Jeffrey tumbling period [23] is related to the Ericksen–Leslie

tumbling parameter λeq by PJ = 4π/(γ̇
√

1 − λ2
eq), for a full rotation of the director.

In the following, both λk and κ are considered as model parameters. The first one is
essential for the coupling between the alignment and the viscous flow. The second one
influences the orientational behaviour quantitatively but does not seem to affect it in a qualitative
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way. If one wants to correlate the present theory with the flow behaviour of the alignment in the
isotropic phase, on the one hand, and in the nematic phase, on the other hand, for small shear
rates where the magnitude of the order parameters is practically unaltered, it suffices to study
the case λk 	= 0, κ = 0 in order to match an experimental value of λ with the expression (13).
Mesoscopic theories [6, 17, 27] indicate that κ ∼ λk. Thus we also study the case κ 	= 0, in
particular κ = 0.4. See section 5 for an estimate of model parameters for specific fluids.

2.4. The dimensionless stress tensor

The stress tensor (5) associated with the alignment is related to the relevant quantities expressed
in terms of scaled variables by

− pal = √
2

ρ

m
kBT aK�ref

√
3

2
λkΦ̃, Φ̃ = Φ∗ +

2κ

3λk

√
6 a∗ · Φ∗ , (15)

where a∗ = a/aK and Φ∗ = Φ/�ref in (15). The dimensionless shear stress Σal associated
with the alignment is defined by

Σal ≡ 2√
3
λ−1

k Φ̃. (16)

Then, equation (15) is equivalent to

− pal = √
2GalΣal, Gal = 3

4

ρkBT

m
λ2

kδK A0a2
K, (17)

where Gal is a shear modulus associated with the alignment contribution to the stress tensor,
and the product A0a2

K is essentially one parameter entering the theoretical expressions. The
quantity ηref = Galτal serves as a reference value for the viscosity. With the scaling used here,
the dimensionless (first) Newtonian viscosity, in the isotropic phase, is η∗

New = 1 + η∗
iso with

η∗
iso = ηiso/ηref . For high shear rates the dimensionless viscosity η∗ approaches the second

Newtonian viscosity η∗
iso. The total deviatoric (symmetric traceless) part of the stress tensor, in

units of Gal, is denoted by σ. In terms of the quantities introduced here, it is given by (see (4))

Galσ = − p = 2ηisoΓ − pal = 2ηisoΓ +
√

2GalΣal. (18)

In the following, we will denote quantities in reduced units by the same symbols as the
original ones, unless ambiguities could arise.

2.5. Special geometry and component notation

The symmetric traceless alignment tensor has five independent components. It can be expressed
in a standard [39] orthonormalized tensor basis as follows:

a =
4∑

k=0

aKT k, T 0 ≡ √
3/2 ezez , T 1 ≡ √

1/2(exex − eyey),

T 2 ≡ √
2 exey , T 3 ≡ √

2 exez , T 4 ≡ √
2 eyez ,

(19)

where ex.y.z are unit vectors parallel to the coordinate axes. The T i with i = 1, . . . , 5 are the
basis tensors by means of which a is uniquely expressed. The orthogonality relation and the
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expression for the coefficients aK are given by T i : T k = δik and aK = a : T k . Using these
basis tensors, from (2) we obtain a system of five ordinary differential equations:

ȧ0 = −�0 − 1
3

√
3κγ̇ a2,

ȧ1 = −�1 + γ̇ a2,

ȧ2 = −�2 − γ̇ a1 +

√
3

2
λk γ̇ − 1

3

√
3κγ̇ a0,

ȧ3 = −�3 + 1
2 γ̇ (κ + 1)a4,

ȧ4 = −�4 + 1
2 γ̇ (κ − 1)a3,

(20)

where
�0 = (ϑ − 3a0 + 2a2)a0 + 3(a2

1 + a2
2) − 3

2 (a2
3 + a2

4),

�1 = (ϑ + 6a0 + 2a2)a1 − 3
2

√
3(a2

3 − a2
4),

�2 = (ϑ + 6a0 + 2a2)a2 − 3
√

3a3a4,

�3 = (ϑ − 3a0 + 2a2)a3 − 3
√

3(a1a3 + a2a4),

�4 = (ϑ − 3a0 + 2a2)a4 − 3
√

3(a2a3 − a1a4),

(21)

and a2 ≡ a2
0 + a2

1 + a2
2 + a2

3 + a2
4. The parameters κ, ϑ, λk were introduced in the previous

section.
The corresponding expansion with respect to the basis tensors and the component notation

can be used for the other second-rank irreducible tensors. From equations (16) and (15) one
deduces expressions for the (dimensionless) shear stress σxy , and the normal stress differences
N1 = σxx − σyy and N2 = σyy − σzz in terms of the dimensionless tensor components
�i ≡ Σal : T i , φi ≡ Φ : T i and ai ≡ a : T i . These relations are

σxy = ηisoγ̇ + �2, N1 = 2�1, N2 = −√
3�0 − �1, (22)

with

�2 = 2√
3
λ−1

k

[
φ2 − κ̃

(
a2φ0 + a0φ2 −

√
3

2
(a4φ3 + a3φ4)

)]
,

�1 = 2√
3
λ−1

k

[
φ1 − κ̃

(
a1φ0 + a0φ1 −

√
3

2
(a3φ3 − a4φ4)

)]
,

�0 = 2√
3
λ−1

k

[
φ0 − κ̃

(
a0φ0 − a1φ1 − a2φ2 +

1

2
(a3φ3 + a4φ4)

)]
,

(23)

and κ̃ = 2κ/(3λk).
Expressions for ratios between rheological quantities such as N2/N1 or N1/σxy are

immediately obtained from equations (22), (23).

2.6. Dynamic states

For the following discussions, it is appropriate to review the kinds of dynamic states found
from the solution (see [13]) of the differential equations for the components of the alignment
tensor:

• Symmetry adapted states with a3 = a4 = 0:

Aligning (A): stationary in-plane flow alignment with a0 < 0. Furthermore, one may
distinguish states A+ and A− pertaining to positive and negative values for the flow
alignment angle χ . For nematics composed of rod-like particles the first case occurs
for small, the latter one for very large shear rates.
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Tumbling (T): in-plane tumbling of the alignment tensor; the main director is in the
flow plane and rotates about the vorticity axis.
Wagging (W): in-plane wagging or vibrational motion of the main director about the
flow direction.
Log-rolling (L): stationary alignment with a1 = a2 = 0 and a0 > 0. This out-of-plane
solution is unstable, in most cases.

• Symmetry breaking states with a3 	= 0, a4 	= 0:

Stationary symmetry breaking states (SB): which occur in pairs of a3, a4 and
−a3,−a4.
Kayaking–tumbling (KT): the projection of the main director onto the flow plane
describes a tumbling motion.
Kayaking–wagging (KW): a periodic orbit where the projection of the main director
onto the flow plane describes a wagging motion.
Complex (C): complicated motion of the alignment tensor. This includes periodic
orbits composed of sequences of KT and KW motion with multiple periodicity as
well as aperiodic, erratic orbits. The largest Lyapunov exponent for the latter orbits
is positive, i.e., these orbits are chaotic.

For a given choice of parameters, in general, only a subset of these solutions are found on
increasing the shear rate γ̇ . The T and W states can be distinguished in a plot of a1 versus a2.
The point (a1, a2) = (0, 0) is included in the cycle for tumbling and excluded for wagging.
Analogously, in a plot of a3 versus a4, the point (a3, a4) = (0, 0) is included in the cycle for
the KT orbits and excluded for the KW orbits. ‘Phase portraits’ of this kind are also useful for
recognizing more complicated periodic and also irregular orbits; see [13]. Some examples for
orbits and phase portraits will be presented later.

The type of orientational behaviour strongly affects the rheological behaviour of the fluid.
In the following, rheological properties such as the shear stress, the non-Newtonian viscosity,
and the normal stress differences are presented as functions of the shear rate for a few selected
values of the temperature and for the other model parameters λk and κ . The underlying
orientational behaviour is discussed for a few representative cases and we address the question
of which rheological properties indicate a chaotic behaviour.

3. Long time and time-averaged rheological behaviour

3.1. The imposed shear rate

In the following, results are presented for the rheological properties calculated from
numerical solutions (with a Runge–Kutta method, e.g. via NDSolve of MathematicaTM) of the
equations (20), (21) governing the dynamics of the alignment and with the expressions (23)
for the relevant components of the stress tensor. As initial conditions, a state close to a random
orientation is chosen with small (0.01–0.1) but non-zero values for the components of the
alignment tensor. Time averages of the components of the alignment tensor and of the stress
tensor are evaluated for the relevant range of shear rates. The total run time trun is such that
the total shear deformation γ = γ̇ trun � 1. The desired data are computed as the averages of
the values of the tensor components evaluated at time intervals �t � 1. The initial transient
behaviour is disregarded, i.e., the data are extracted beginning at times between trun/3 and
trun/2. For those model parameters where a steady state solution exists, stationary solutions
are approached rather quickly and the averaging procedure actually would not be needed for
long times. In the case of a non-steady response of the alignment, however, the evaluation of
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Figure 2. The flow alignment angle and the magnitude of the in-plane alignment as functions of
the shear rate for λk = 1.25 and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in
the isotropic phase, at the temperature ϑ = 2. The data stem from calculations with constant shear
rates, with a maximum shear deformation 150. A logarithmic scale is used for the shear rate.

time averages is essential in order to compare the theory with non-time-resolved rheological
measurements where the time average is performed automatically. So it is advantageous to
use a method which works in the isotropic phase and for flow aligned as well as for tumbling
nematics.

Experiments are not only carried out for imposed shear rates but also for imposed shear
stress. Calculations intended to give long time averages for the latter case are performed by
replacing the constant shear rate γ̇ in (20) by the dynamic shear rate g = g(t) which obeys the
equation ġ = −(σxy(t) − σimp)/(τgηiso). Here σxy is the instantaneous shear stress as given
by (22) with (23), σimp is the imposed constant shear stress, ηiso is the (second Newtonian)
viscosity discussed above, and τg is a relaxation time coefficient determining the speed of
the shear stress control. Comparison of long time averages from computations with imposed
shear stresses and shear rates are presented elsewhere [40]. Here time averages as well as the
transient and the dynamic behaviours of the alignment and the stress tensor are analysed for
the case of an imposed shear rate.

3.2. Flow alignment and viscosity in the isotropic phase

Results for the flow alignment in the isotropic phase, at the temperature ϑ = 2, are presented

in figure 2. The flow angle χ and the magnitude ain =
√

a2
1 + a2

2 of the in-plane alignment
are displayed as functions of the shear rate. The angle is computed from the relation
sin(2χ) = a2/ain. The model parameters λk = 1.25, κ = 0 (black dots) and λk = 1.05,
κ = 0.4 (grey dots) were chosen (see also section 5); the two sets of parameters yield the
same value for the tumbling parameter at ϑ = 0. Clearly, in the isotropic phase also there
is little difference between the two cases. This is also inferred from the stationary solution
of the relaxation equation for the alignment tensor for large ϑ where terms nonlinear in the
alignment can be disregarded. In this case one has

a2 = (
√

3/2)λkϑ
−1γ̇

(
1 + (1 − κ2/3)ϑ−2γ̇ 2

)−1
, (24)

a1 = ϑ−1γ̇ a2, a0 = −(
√

3/3)κϑ−1γ̇ a2, (25)

and a3 = a4 = 0. The resulting expressions for the angle and the in-plane alignment are

sin(2χ) = 1/
√

1 + ϑ−2γ̇ 2, ain =
√

1 + ϑ−2γ̇ 2|a2|. (26)

Notice that the expression (26) is independent of λk and κ . Thus the small differences seen in
the left graph of figure 2 stem from the nonlinear terms in the relaxation equation. The flow
angle χ can be determined in a flow birefringence experiment with the incident light beam
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Figure 3. The magnitude of the total alignment and the biaxiality as functions of the shear rate
for λk = 1.25 and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the isotropic
phase, at the temperature ϑ = 2. The data stem from calculations with constant shear rates, with
a maximum shear deformation 150. A logarithmic scale is used for the shear rate.
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Figure 4. The shear stress (left) and viscosity (right) as functions of the shear rate for λk = 1.25
and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the isotropic phase, at the
temperature ϑ = 2. The data stem from calculations with constant shear rates, with a maximum
shear deformation 150. Logarithmic scales are used for both axes.

parallel to the vorticity direction. The birefringence, i.e. the difference δν = ν1 − ν2 of the
indices of refraction ν1 and ν2 for light linearly polarized parallel to the in-plane unit vectors
e1 and e2 which enclose the angles χ and χ + π/2 with the flow direction, is given by

2νδν = (15)−1/2(ε‖ − ε⊥)aKain sgn(a2). (27)

Here ν is an average index of refraction and ε‖, ε⊥ are the relative electric permeability for
electric fields parallel and perpendicular to u, assumed to be the optical axis of an effectively
uniaxial particle. Measurements of χ as a function of the shear rate, for different values
of the temperature or the concentration, in the isotropic phase can be used to determine the
reference time needed to scale the shear rates. Similarly, the value of λk can be inferred from
the birefringence in the small shear rate limit; see section 5.

In figure 3 the magnitude of the total alignment, namely a = √
a2 =

√
a2

0 + · · · + a2
4 ,

and the biaxiality parameter b are shown as a function of the shear rate. The latter quantity
is inferred from b2 = 1 − I 2

3 /I 3
2 where I2 = a2 and I3 = √

6a : (a · a) are the second- and
third-order invariants of the alignment tensor. For a planar biaxial alignment as realized for the
isotropic phase, subjected to a plane Couette flow with a small shear rate, one has b = 1. In
a nematic phase in equilibrium, the alignment is uniaxial, which implies b = 0. The isotropic
fluid subjected to a high shear rate has a small, but non-zero biaxiality. The quantities displayed
in figure 3 are practically inaccessible in experiments. The case is different for the shear stress
and the normal stress differences to be discussed next.

The shear stress and the viscosity in the isotropic phase are presented in figure 4 as functions
of the shear rate. The model parameters are λk = 1.25, κ = 0 (black dots) and λk = 1.05,
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Figure 5. The first and second normal stress differences as functions of the shear rate for λk = 1.25
and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the isotropic phase, at the
temperature ϑ = 2. The data stem from calculations with constant shear rates, with a maximum
shear deformation 150. A logarithmic scale is used for the shear rate.
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Figure 6. The flow alignment angle and the magnitude of the in-plane alignment as functions of
the shear rate for λk = 1.25 and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the
isotropic phase, at the temperature ϑ = 1.3. The data stem from calculations with constant shear
rates, with a maximum shear deformation 150. A logarithmic scale is used for the shear rate.

κ = 0.4 (grey dots), as before. Furthermore, ηiso = 0.1, in reduced units, is chosen. Notice
that a double-logarithmic scale is used.

Figure 4, pertaining to the reduced temperature ϑ = 2, shows the behaviour typical for the
isotropic phase, namely a first Newtonian viscosity, η = 1.1 in reduced units for small shear
rates, a strong shear thinning for intermediate ones, and the approach to the second Newtonian
viscosity ηiso = 0.1 for high shear rates. Calculations with imposed shear rate and imposed
shear stress give equivalent results. Again, the two sets of model parameters yield almost
identical values for the shear stress and consequently for the viscosity. In contradistinction,
differences are quite noticeable for the normal stress differences, in particular for N2; see
figure 5.

3.3. The shear flow induced isotropic-to-nematic phase transition

Still in the isotropic phase, but closer to the phase transition temperature, a shear induced
transition to the nematic phase occurs. This is seen in the following figures for ϑ = 1.3 which
contain the information on the alignment, the stress, and the viscosity in analogy to the figures
shown for ϑ = 2.0.

On the basis of the equations presented here, a shear flow induced isotropic-to-nematic
phase transition was predicted theoretically quite some time ago [24, 25]. This phenomenon
has been observed in lyotropic liquid crystals, in particular with wormlike micelles [10], and
in side chain liquid crystalline polymers [41]. In figures 6–9, results are presented for the same
sets of model parameters and for ϑ = 1.3. By comparison, the highest value of ϑ for which
a metastable nematic phase exists is ϑ = 9/8 = 1.125. For imposed shear rates, the shear
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Figure 7. The magnitude of the total alignment and the biaxiality as functions of the shear rate
for λk = 1.25 and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the isotropic
phase, at the temperature ϑ = 1.3. The data stem from calculations with constant shear rates, with
a maximum shear deformation 150. A logarithmic scale is used for the shear rate.
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Figure 8. The shear stress (left) and viscosity (right) as functions of the shear rate for λk = 1.25
and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the isotropic phase, at the
temperature ϑ = 1.3. The data stem from calculations with constant shear rates, with a maximum
shear deformation 150. Logarithmic scales are used for both axes.
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Figure 9. The first and second normal stress differences as functions of the shear rate for λk = 1.25
and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the isotropic phase, at the
temperature ϑ = 1.3. The data stem from calculations with constant shear rates, with a maximum
shear deformation 150. A logarithmic scale is used for the shear rate.

stress and consequently the viscosity jump to smaller values at the induced phase transition.
For imposed shear stress there is a jump to higher shear rates. Notice the dramatic decrease of
the viscosity at the transition and the small biaxiality in the flow induced nematic state, very
similar to the small biaxiality in a flow aligned nematic state.

3.4. The flow aligned nematic

For the set of model parameters λk and κ , the tumbling parameter (13) is larger than 1 in
the temperature or concentration interval ≈0.6 < ϑ < 1.125; see figure 1. In the range
≈0.6 < ϑ < 1.0, the solution of the relaxation equation for the alignment tensor, in the
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Figure 10. The flow alignment angle and the magnitude of the in-plane alignment as functions of
the shear rate for λk = 1.25 and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the
isotropic phase, at the temperature ϑ = 0, 0. The data stem from calculations with constant shear
rates, with a maximum shear deformation 750.
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Figure 11. The magnitude of the total alignment and the biaxiality as functions of the shear rate
for λk = 1.25 and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the nematic
phase, at the temperature ϑ = 0. The data stem from calculations with constant shear rates, with
a maximum shear deformation 750.

presence of a steady shear flow, approaches a flow aligned state. The symmetry breaking
components relax to zero, just as in the isotropic phase. In the limit of small shear rates, the
magnitude of the alignment is practically unaffected by the flow and the alignment practically
remains uniaxial as in equilibrium. In this limiting case, the Ericksen–Leslie theory is
applicable; see also [15]. For sake of brevity, no graphs analogous to the previous ones are
presented for the flow oriented state; we focus our attention instead on the tumbling regime.

3.5. The tumbling nematic

3.5.1. Survey. Next, results are presented for the time-averaged alignment and for the time-
averaged rheological behaviour in the nematic phase at a state point where no stable flow
alignment is possible. In particular, the temperature ϑ = 0 and the two sets of parameters
λk = 1.25, κ = 0 and λk = 1.25, κ = 0.4 are chosen again. In figures 10, 11, the flow
angle χ , the magnitude of the in-plane alignment ain, the magnitude of the total alignment
a, and the biaxiality coefficient b are displayed as functions of the shear rate, in the range
1.5 < γ̇ < 4.5, now with a linear scale. Similar to the isotropic phase case, the flow angle
χ is determined according to sin(2χ) = a2/(a2

1 + a2
2)(1/2) where it is understood that the

time-averaged components of the alignment tensor are used. The quantity b, on the other
hand, is the time average of the instantaneous biaxiality. The indicators for the alignment
show strong variations, even transition-like discontinuities and sign changes in the shear rate
intervals between approximately 1.6 and 1.9, and between 3.6 and 4.1. The same feature is
seen in plots of the rheological properties displayed in figures 12, 13.
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Figure 12. The shear stress (left) and viscosity (right) as functions of the shear rate for λk = 1.25
and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the nematic phase, at the
temperature ϑ = 0. The data stem from calculations with constant shear rates, with a maximum
shear deformation 750. Linear scales are used for both axes.
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Figure 13. The first and second normal stress differences as functions of the shear rate for λk = 1.25
and κ = 0 (black dots) and λk = 1.05 and κ = 0.4 (grey dots), in the nematic phase, at the
temperature ϑ = 0. The data stem from calculations with constant shear rates, with a maximum
shear deformation 750.

The shear rate intervals where the strong variations occur deserve closer attention. As
will be pointed out later, there are transitions between different types of periodic behaviour in
the first of these shear rate ranges; in the second one, an irregular chaotic behaviour is found.
Despite the noticeable quantitative difference between the data points pertaining to the two sets
of model parameters, the qualitative behaviours are rather similar. So the following analysis
is restricted to the case λk = 1.25, κ = 0.

3.5.2. Transitions between dynamic states. In figures 14, 15 the time-averaged flow angle,
the magnitude of the in-plane alignment, the shear stress, and the first normal stress difference
are displayed. The enhanced resolution of the shear rate clearly reveals that the few points
off the curve in the previous figures are not the computational ‘measuring errors’. There do
indeed relate to transitions between different dynamic states when the shear rate is changed.

Notice the twofold change of sign of N1, namely from positive to negative to positive,
a phenomenon which was observed with main chain polymeric liquid crystals [8]. The flow
angle shows a similar behaviour. From figures 14, 15 one might guess that two transitions
occur in the interval of shear rates considered. Inspection of figure 16, however, reveals that the
sequence of transitions is more complicated. The quantities looked at here are the magnitude

of the symmetry breaking or ‘out-of-plane’ components, namely
√

a2
3 + a2

4 , and the biaxiality
coefficient b. More precisely, the time averages of a3 and a4 are squared and added in the
evaluation of the magnitude of the ‘out-of-plane’ components. This quantity is small, but
definitely non-zero for γ̇ < 1.68; it is zero for 1.69 < γ̇ < 1.8, it is large for 1.8 < γ̇ < 1.82,
and again small but non-zero for 1.83 < γ̇ . A closer inspection of the orbits—examples are
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Figure 14. The time-averaged flow alignment angle and the magnitude of the in-plane alignment
as functions of the shear rate, in the interval from 1.6 to 1.9, for λk = 1.25 and κ = 0, in the
nematic phase, at the temperature ϑ = 0. The data stem from calculations with constant shear
rates, with a maximum shear deformation 750.
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Figure 15. The shear stress and the first normal stress difference as functions of the shear rate
for λk = 1.25 and κ = 0, in the nematic phase, at the temperature ϑ = 0. The data stem from
calculations with constant shear rates, with a maximum shear deformation 750.
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Figure 16. The magnitude of the symmetry breaking components of the alignment tensor and the
biaxiality parameter as functions of the shear rate for λk = 1.25 and κ = 0, in the nematic phase, at
the temperature ϑ = 0. The data stem from calculations with constant shear rates, with a maximum
shear deformation 750.

given later—indicates the sequence of dynamic transitions KT → T → KW → KT in the
range of shear rates considered here.

3.5.3. The chaotic domain. The time-averaged flow angle, the magnitude of the in-plane
alignment, the shear stress, and the first normal stress difference for shear rates between 3.6
and 4.1 are displayed in figures 17, 18. A rather irregular behaviour, i.e. a sensitive dependence
on the value of the imposed shear rate, is seen. This is indicative of a chaotic behaviour. Indeed,
the computation of Lyapunov exponents revealed that the largest one is positive for shear rates
in intervals which have a rather fractal character [13]. Also, rather complex periodic orbits
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Figure 17. The time-averaged flow alignment angle and the magnitude of the in-plane alignment
as functions of the shear rate, in the interval from 3.6 to 4.1, for λk = 1.25 and κ = 0, in the
nematic phase, at the temperature ϑ = 0. The data stem from calculations with constant shear
rates, with a maximum shear deformation 1500.
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Figure 18. The shear stress and the first normal stress difference as functions of the shear rate
for λk = 1.25 and κ = 0, in the nematic phase, at the temperature ϑ = 0. The data stem from
calculations with constant shear rates, with a maximum shear deformation 1500.

3.6 3.7 3.8 3.9 4 4.1
shear rate

0
0.1
0.2
0.3
0.4
0.5
0.6

ou
to

fp
la

ne
al

ig
nm

en
t

3.6 3.7 3.8 3.9 4 4.1
shear rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7

bi
ax

ia
li

ty

Figure 19. The magnitude of the symmetry breaking components of the alignment tensor and the
biaxiality parameter as functions of the shear rate for λk = 1.25 and κ = 0, in the nematic phase, at
the temperature ϑ = 0. The data stem from calculations with constant shear rates, with a maximum
shear deformation 1500.

were observed [13]. Notice that the first normal stress difference and the average flow angle
are positive for γ̇ < 4.0 and negative for γ̇ > 4.0. A smooth, curve-like dependence on the
shear rate is found for γ̇ > 4.1 where a flow aligned state is reached.

The magnitudes of the symmetry breaking components of the alignment tensor and the
biaxiality coefficient as displayed in figure 19 for the same range of shear rates also show a
rather erratic dependence on the shear rate. Notice the strong decrease of the biaxiality towards
the flow aligned state at the higher shear rates.
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Figure 20. The in-plane orbit a1 versus a2 and the rheological phase portrait, namely the normal
stress difference N1 versus the shear stress in the kayaking–tumbling regime, at the shear rate 1.0
with the maximum shear deformation 400. The temperature is ϑ = 0; the model parameters are
λk = 1.25 and κ = 0.

4. Orbits

4.1. General remarks; the flow aligned state

Instead of analysing the components of the alignment and stress tensors as functions of the
time, it is more instructive to produce ‘orbits’ or ‘phase portraits’ where one component is
plotted versus another one. The true alignment orbit is a curve in five-dimensional space; the
two-dimensional orbits to be shown are projections on various planes. Usually, the notion
‘phase portrait’ is applied to plots of a ‘velocity’ (time derivative) versus a ‘coordinate’. Here
a plot of a normal stress difference versus the shear stress is referred to as a ‘rheological phase
portrait’. In a stationary state, the alignment orbits consist of a single point; relatively simple
curves indicate the transient behaviour during the approach towards the asymptotic state. The
symmetry adapted components a0, a1, a2 of the alignment tensor as well as the shear stress and
the normal stress differences approach single non-zero values, whereas the symmetry breaking
components a3, a4 tend to zero. The orbits look drastically different for periodic and for the
chaotic solutions to be presented next, in an order as encountered with increasing shear rates,
at ϑ = 0. All orbits to be shown start from the initial values −0.1, 0.1, 0.1, 0.1,−0.1 for
a0, . . . , a4.

4.2. Kayaking and tumbling

As already mentioned above, for λk = 1.25, κ = 0, and ϑ = 0, periodic solutions of KT
type are found for shear rates below ≈1.68 as well as between 1.83 and about 3.65. Typical
orbits and rheological phase portraits are shown in figures 20, 21 for γ̇ = 1.0. Limit cycles
are approached after a relatively long and complex transient behaviour. The instantaneous
magnitudes of the symmetry breaking components a3 and a4 can be rather large. Their time
averages, however, are relatively small since these quantities are approximately symmetric
about zero. The case is different for the KW solutions to be discussed later.

4.3. In-plane tumbling

In-plane tumbling solutions occur for shear rates between approximately 1.7 and 1.8, for
the same model parameters as above. Typical orbits, analogous to the previous ones, are
shown in figures 22, 23 for γ̇ = 1.75. Notice that the symmetry breaking components of the
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Figure 21. The orbit a0 versus a2 and the symmetry breaking orbit a4 versus a3 in the kayaking–
tumbling regime, at the shear rate 1.0 with the maximum shear deformation 400. The temperature
is ϑ = 0; the model parameters are λk = 1.25 and κ = 0.
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Figure 22. The in-plane orbit a1 versus a2 and the rheological phase portrait, namely the normal
stress difference N1 versus the shear stress in the in-plane tumbling regime, at the shear rate 1.75
with the maximum shear deformation 1750. The temperature is ϑ = 0; the model parameters are
λk = 1.25 and κ = 0.
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Figure 23. The orbit a0 versus a2 and the symmetry breaking orbit a4 versus a3 in the in-plane
tumbling regime, at the shear rate 1.75 with the maximum shear deformation 1750. The temperature
is ϑ = 0; the model parameters are λk = 1.25 and κ = 0.

alignment tensor vanish in the long time limit as it is typical for in-plane periodic solutions.
The component a0 is also a periodic function oscillating about a constant, negative value. The
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Figure 24. The in-plane orbit a1 versus a2 and the rheological phase portrait, namely the normal
stress difference N1 versus the shear stress in the kayaking–wagging regime, at the shear rate 1.82
with the maximum shear deformation 1820. The temperature is ϑ = 0; the model parameters are
λk = 1.25 and κ = 0.
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Figure 25. The orbit a0 versus a2 and the symmetry breaking orbit a4 versus a3 in the kayaking–
wagging regime, at the shear rate 1.82 with the maximum shear deformation 1820. The temperature
is ϑ = 0; the model parameters are λk = 1.25 and κ = 0.

rheological phase portrait, namely the right graph of figure 22, looks more complex than the
corresponding plot of a1 versus a2 for the alignment tensor. The instantaneous values of the
first normal stress difference can be positive and rather large despite the fact that their time
average yields a negative value. Also negative values occur for the shear stress during a small
fraction of the periodic orbit. The time average of the shear stress is positive, and thus in
accord with the second law.

4.4. Kayaking and wagging

For the model parameters under consideration, the KW type of dynamic behaviour occurs in
a narrow range of shear rates slightly above 1.8. In figure 24 the in-plane orbit, namely the
component a1 of the alignment tensor versus a2, and the rheological phase portrait are plotted
for λk = 1.25 and κ = 0 at the temperature ϑ = 0. The shear rate is γ̇ = 1.82. In figure 25
the orbits a0 versus a2 and a4 versus a3 are displayed. Notice that the asymptotic orbit of
the symmetry breaking components a3, a4 does not enclose the point a3, a4 = 0, 0. This is a
feature characteristic for the KW mode. It implies that the time average of these components
is distinctively different from zero. Furthermore, the asymptotic state reached in the KW case
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Figure 26. The in-plane orbit a1 versus a2 and the rheological phase portrait, namely the normal
stress difference N1 versus the shear stress in the chaotic regime, at the shear rate 3.75 with the
maximum shear deformation 3750. The temperature is ϑ = 0; the model parameters are λk = 1.25
and κ = 0.

Figure 27. The orbit a0 versus a2 and the symmetry breaking orbit a4 versus a3 in the chaotic
regime, at the shear rate 3.75 with the maximum shear deformation 3750. The temperature is
ϑ = 0; the model parameters are λk = 1.25 and κ = 0.

is not unique. Also the solutions with −a3,−a4 exist and will be attained from different initial
conditions.

4.5. Chaotic behaviour

A stringent proof for a true chaotic behaviour does not follow from an inspection of the time
dependence of the tensor components or of the phase portraits. However, it is instructive to
compare the previous periodic asymptotic orbits with those for which it is known [13] from
the computation of the Lyapunov exponents that the behaviour is chaotic. Examples for the
alignment and the rheological properties are shown in figures 26 and 27.

Here orbits are shown for the case κ = 0 only. However, similar chaotic orbits and phase
portraits also occur for non-zero κ , e.g. for ϑ = 0, λk = 1.05, κ = 0.4 at the shear rate 4.2.

4.6. The flow aligned state at high shear rates

At high shear rates a flow aligned state is reached with orbits and rheological phase portraits
which are rather simple compared with those shown above. For λk = 1.25, κ = 0 and
λk = 1.05, κ = 0.4, at ϑ = 0, this state is reached for shear rates above approximately 4.1
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Table 1. Experimental data [4, 20] for the clearing temperature TK (or concentration cK ), molecular
weight M, length L , and width d of the axisymmetric ellipsoid model for p-methoxy-benzylidene-
p-butylaniline (MBBA), octylcyanobiphenyl (8CB), tobacco mosaic (TMV) and polyethylene
glycol coated fd virus (whose effective diameter for the calculation of p is 27 nm) [20, 21], together
with theoretical estimates of the remaining quantities for given temperature and density (ρ, T or
T, c). For the table, a reduced ‘temperature’ ϑ = 1/2 and δK = 1/100 are assumed. Therefore,
we consider pseudo-critical temperatures T ∗ = (1 − δK)TK = 0.99TK, samples at temperatures
T = (TK/ϑ)(ϑ − δK)/(1 − δK) ≈ 0.9899TK, and an order parameter S2 ≈ 1.3SK ≈ 0.42; see
section 5 for further details and definitions. An axis ratio p = 0.7L/d (the approximate result for
cylinders) rather than p = L/d (for ellipsoids) was used, and water (ηs = 0.1 mPa s) has been used
as a solvent for evaluating sample values. The experimental viscosities, relaxation times, order
parameters etc differ by less than a factor of two from the values predicted here.

TK M ρ, T L/d/p R η τref

(K) (g mol−1) (g ml−1, K) (Å/Å/) (Å) κ er λk λeq (mPa s) (10−6 s)

MBBA 317 300 1, 314 45/6/5.3 0.930 0.40 5.0 1.16 1.02 85 2.3
8CB 313 278 1, 310 29/3.6/5.6 0.939 0.40 5.5 1.17 1.03 24 0.6

cK M T, c L/d/p R η τref

(mg ml−1) (107 g mol−1) (K, mg ml−1) (nm/nm/) (Å) κ er λk λeq (mPa s) (s)

fd virus 11 1.6 300, 10.9 880/9/23 0.996 0.43 53 1.24 1.09 6.8 1.2
TMV 20 4 300, 19.8 300/18/17 0.985 0.42 17 1.22 1.08 4.6 0.9

and 4.3, respectively. The first normal stress difference is negative, whereas it is positive in
the non-tumbling nematics.

5. Model parameters for specific fluids

The following remarks are intended to give some hints as regards the application of the theory to
specific molecular fluids and colloidal dispersions. As mentioned before, the model parameters
can be related ‘molecular’ properties by using a mesoscopic theory starting from a generalized
Fokker–Planck equation [6, 17, 31]. For ellipsoids of revolution with the semi-axes a, b = a, c
and the axis ratio p = c/a, one has λk = (2/

√
5aK)R = 2R/(5SK), κ = (3/7)R with the

‘shape factor’ R given by R = (p2 − 1)/(p2 + 1). Some guidance for the application of
these formulae is given through table 1. Here SK is the equilibrium value of the Maier–Saupe
order parameter at the transition to the nematic phase. The quantity R vanishes for spherical
particles corresponding to p = 1; it approaches the values 1 and −1 for very thin rods and
discs, respectively. The specific expression for R was inferred from hydrodynamics [32],
applicable to larger particles in dilute suspensions. For molecular fluids, experimental data
indicate that R is slightly larger than 1 [42]. Thus for practical purposes, it seems appropriate
to determine the model parameter λk either from the flow birefringence in the isotropic phase—
see section 3.2—or from the value of the tumbling parameter via the flow alignment angle, at
small shear rates, just inside the nematic phase.

To find the chaotic domain for tumbling nematics one needs the reference value τref for
the time—see (11); for the shear rate the reference value is τ−1

ref . From mesoscopic theory one
can obtain values for this quantity subject to certain approximations. For example, one expects
τref = τaδ

−1
K with τa = ηsV/(kBT )er, where ηs is the solvent viscosity, V the volume of a single

dissolved molecule, and er is another shape factor which becomes er = 2 p2/(3(2 ln(2 p)− 1))

for p � 1 and er = 1 + ε/5 for p = 1 + ε, |ε| � 1 [38]. The contribution to the viscosity
is of the order of η ≈ νkBT τa, where ν denotes the number density of the molecules (the
precise expression in terms of particle shape is given in [38]). These relationships are used in
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table 1. Again, it seems advisable to infer this quantity directly from experiments, e.g. from
the dependence of the flow angle on the shear rate in the isotropic phase—see (26)—or, in
the nematic phase, from the Jeffrey tumbling period PJ. For |λeq| < 1 and in the limit of
small shear rates γ̇ , the Jeffrey tumbling period [23] is related to the Ericksen–Leslie tumbling

parameter λeq by PJ = 4π/(γ̇
√

1 − λ2
eq), for a full rotation of the director. Strictly speaking,

this expression applies to in-plane tumbling at small shear rates. It also gives a good estimate
for half of the tumbling period of the components a1 and a2 of the alignment tensor in the
kayaking–tumbling regime [13]. For the symmetry breaking components the periodicity is
approximately determined by the full tumbling period PJ. For the state point ϑ = 0 and
λeq = 5/6, as studied here in some detail, the chaotic regime is close to the dimensionless
shear rate γ̇ ≈ 4 corresponding to PJ ≈ 1.8π ≈ 5.7.

6. Conclusions

In this paper, results are presented for the rheological behaviour and for the underlying
dynamics of the alignment of tumbling nematic liquid crystals. The basic theory is outlined. For
selected state points and model parameters, rheological properties, orbits, and phase portraits
are displayed graphically, as obtained from numerical solutions of the relevant equations (20)–
(23). The analysis was restricted to a situation with a spatially homogeneous velocity gradient
as in an ideal plane Couette flow. In general, one has to deal with a spatially inhomogeneous
alignment and with the onset of a secondary flow, as is typical for a non-Newtonian fluid. Thus
the equation for the alignment tensor has to be amended and the full hydrodynamicproblem has
to be solved. The first issue is related to the tensorial treatment [43] of the Frank elasticity of
nematics. In the one-coefficient approximation, this requires an additional term [14] −�2�a,
with a characteristic length �, on the left-hand side of (2); see also [22]. For the second task, it
is desirable to apply and test, in addition to grid based methods, smooth particle and dissipative
particle methods in the spirit of [44]; i.e., the stress and alignment tensors should be used as
local dynamic variables. The tensorial rheological model used in [45] to treat fluids which show
both shear thinning and shear thickening is also expected to imply chaotic behaviour, which
deserves a similar analysis. Furthermore, it seems feasible to treat the shear flow induced
changes seen in side chain polymeric liquids [41] with a two-alignment tensor theory, one
tensor specifying the alignment of the mesogenic side groups, the other one characterizing
the orientation of the backbone. On the other hand, in lyotropic liquid crystals, the coupling
between the alignment tensor and changes of the local concentration [19, 22] may play an
important role. The dynamics of these systems is expected to be even more complex than that
detected and analysed so far.
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[2] de Gennes P G 1974 The Physics of Liquid Crystals (Oxford: Clarendon)
[3] Kelker H and Hatz R 1980 Handbook of Liquid Crystals (Weinheim: Verlag Chemie)
[4] Larson R G 1999 The Structure and Rheology of Complex Fluids (Oxford: Oxford University Press)
[5] Hess S 1975 Z. Naturf. a 30 728
[6] Hess S 1976 Z. Naturf. a 31 1034
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